Transport of Heat and Charge in Electromagnetic Metrology Based on Nonequilibrium Statistical Mechanics

نویسندگان

  • James Baker-Jarvis
  • Jack Surek
چکیده

Current research is probing transport on ever smaller scales. Modeling of the electromagnetic interaction with nanoparticles or small collections of dipoles and its associated energy transport and nonequilibrium characteristics requires a detailed understanding of transport properties. The goal of this paper is to use a nonequilibrium statistical-mechanical method to obtain exact time-correlation functions, fluctuation-dissipation theorems (FD), heat and charge transport, and associated transport expressions under electromagnetic driving. We extend the time-symmetric Robertson statistical-mechanical theory to study the exact time evolution of relevant variables and entropy rate in the electromagnetic interaction with materials. In this exact statistical-mechanical theory, a generalized canonical density is used to define an entropy in terms of a set of relevant variables and associated Lagrange multipliers. Then the entropy production rate are defined through the relevant variables. The influence of the nonrelevant variables enter the equations through the projection-like operator and thereby influences the entropy. We present applications to the response functions for the electrical and thermal conductivity, specific heat, generalized temperature, Boltzmann’s constant, and noise. The analysis can be performed either classically or quantum-mechanically, and there are only a few modifications in transferring between the approaches. As an application we study the energy, generalized temperature, and charge transport equations that are valid in nonequilibrium and relate it to heat flow and temperature relations in equilibrium states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microscopic Quantum Mechanical Foundation of Fourier's Law

Besides the growing interest in old concepts like temperature and entropy at the nanoscale, theories of relaxation and transport have recently regained a lot of attention. With the electronic circuits and computer chips getting smaller and smaller, a fresh look should be appropriate on the equilibrium and nonequilibrium thermodynamics at small length scales far below the thermodynamic limit, i....

متن کامل

Bistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit

We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...

متن کامل

Fourier’s Law confirmed for a class of small quantum systems

Within the Lindblad formalism we consider an interacting spin chain coupled locally to heat baths. We investigate the dependence of the energy transport on the type of interaction in the system as well as on the overall interaction strength. For a large class of couplings we find a normal heat conduction and confirm Fourier’s Law. In a fully quantum mechanical approach linear transport behavior...

متن کامل

Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density.

The phase space probability density for steady heat flow is given. This generalizes the Boltzmann distribution to a nonequilibrium system. The expression includes the nonequilibrium partition function, which is a generating function for statistical averages and which can be related to a nonequilibrium free energy. The probability density is shown to give the Green-Kubo formula in the linear reg...

متن کامل

Heat Conductivity in Small Quantum Systems: Kubo Formula in Liouville Space

We consider chains consisting of several identical subsystems weakly coupled by various types of next neighbor interactions. At both ends the chain is coupled to a respective heat bath with different temperature modeled by a Lindblad formalism. The temperature gradient introduced by this environment is then treated as an external perturbation. We propose a method to evaluate the heat current an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2009